UK’s first carbon capture utilisation demonstration plant opens its doors

The opening event was held on March 1st at The Heath. In attendance was John Lewis, Managing Director of SOG, pictured here with Dr Rowena Sellens, CEO of Econic.

Clean-tech pioneer Econic Technologies has opened a first-of-its-kind plant in the UK to demonstrate to customers how its innovative catalyst technologies can convert CO2 into polyols, which can then be used to make more sustainable polyurethanes for use in products such as automobiles, bedding and footwear.

The new plant is located in Runcorn, at The Heath, one of the UK’s leading independently-owned business and technical parks. It comprises all elements of the production process, integrated from reaction through to final product treatment, in a bespoke industrial unit. Opening its new plant at The Heath demonstrates Econic Technologies’ long term commitment to the North West following its relocation from London to Cheshire in 2017, with the company adding 12 new jobs across its two Cheshire locations since the move.

The new demonstration plant is an exciting step forward in Econic Technologies’ journey to help manufacturers unlock the positive potential of waste CO2.  Until now, the creation of polyols from CO2 has been performed in plants at high-pressures and temperatures. Thanks to its new tunable catalyst technology, Econic Technologies’ plant will be able to produce samples of CO2-based polyols at lower, industrially relevant temperatures and pressures.

The launch of the plant comes just weeks after Econic announced that they had closed a major founding round which saw climate investment group OGCI Ventures coming on board alongside existing investors. As well as private capital investment, the demonstration plant has also received substantial European support through a Horizon 2020 SME Award. Rulande Rutgers, Head of Process and Product Engineering at Econic Technologies explains: “Securing such highly competitive public funding has been an important vote of confidence for Econic Technologies, and is allowing the company to accelerate development pace. Using some of this funding for the new demonstration plant is one way it is helping turn the potential of our catalysts into reality.”

Rowena Sellens, CEO of Econic Technologies, commented: “The demonstration plant is essential to helping our pioneering catalyst technologies develop as they move out of the lab and into the factory. As a company, we want to help drive the market adoption of polyols and our new plant provides an opportunity for us to encourage significant uptake in the industry. The interest from polyol manufacturers and downstream polyol users in the plant has been overwhelming already. We are extremely confident that once we start demonstrating what our technology can do, we will help catalyse a transformation in attitude when it comes to the positive potential of carbon.”

Econic Technologies’ catalysts enable manufacturers to reuse waste CO2, by allowing it to be incorporated as a feedstock, which offers not only a sustainable benefit by reducing the reliance on fossil fuels but also an economical benefit by enhancing margins. The company hopes that by 2027, 30% of all polyol production will take place using Econic’s catalyst technologies, which could save 3.5 million tonnes of CO2 emissions each year – the equivalent to taking two million cars off the road.


For further information, please contact:
Alex Kane, Farrer Kane: +44 (0) 20 7415 7154 | alex@farrerkane.com
Max Jewell, Farrer Kane: +44 (0) 20 7415 7154 | maxjewell@farrerkane.com

For more information on Econic or to inquire about our catalyst technologies, please contact:
Richard French, Business Development Director Econic Technologies | +44 1625 238 645

 

Author, Anthea Blackburn

Econic Technologies raises £7m for pioneering technology to help fight climate change

British catalyst technology company, Econic Technologies, announces the successful completion of its latest round of fundraising. The total amount raised is £7m with first-time investment from OGCI Climate Investments, alongside additional funds from existing shareholders: IP Group plc and Woodford Investment Management. The funding will be used to help further develop Econic’s pioneering catalyst technologies, which unlock the positive potential of waste CO2 by allowing it to be incorporated as a feedstock thereby enhancing margins and reducing the reliance on fossil fuels. The team hopes that by 2027, 30% of all polyol production will take place using Econic’s catalyst technologies, meaning that potentially 3.5 million tonnes of CO2 emissions could be saved each year – the equivalent to taking some two million cars off the road.

In addition to the funds from Econic’s existing shareholders, this latest investment round brings backing from OGCI Climate Investments, the one billion-dollar investment fund created by the Oil and Gas Climate Initiative (OGCI), a voluntary initiative led by CEOs of ten global oil and gas companies. The OGCI Climate Investments fund invests in promising technologies and business models that have the potential to significantly reduce greenhouse gas emissions and that are commercially viable and scalable. Working with OGCI Climate Investments means that Econic Technologies will have access to an impressive network of oil and gas experts, opening the door to future opportunities for the global market to benefit from the positive potential of its catalyst technologies.

Due to the interest expressed by a number of strategic investors, the company has the facility to issue a number of additional shares within a limited time window following this close.

Rowena Sellens, CEO of Econic Technologies, commented: “This latest round of funding will help drive Econic Technologies’ continuing growth, and enable us to transform more waste CO2 into powerful economic and product performance advantages while reducing environmental impact.

“As the catalysts move from our labs to our customer’s factory floor, the funding will be vital to ensure that manufacturers around the world are able to benefit from our pioneering technologies. We are delighted that our investors are prepared to give us the flexibility to bring one or two strategic investors on board and benefit from the additional expertise they can offer at this exciting stage.”

Kelsey Lynn Skinner at IP Group Plc commented: “Econic continues to make strong progress with its transformational catalyst technologies and we are pleased to continue to play a pivotal role in helping the company to realise this potential.”

Pratima Rangarajan, CEO of OGCI Climate Investments commented: “We believe that CO2 utilisation in products is an important pathway to capture carbon, resulting in a more sustainable future. Econic Technologies’ catalyst is a step in the right direction and we look forward to supporting them as they grow.”


For further information, please contact:
Alex Kane, Farrer Kane: +44 (0) 20 7415 7154 | alex@farrerkane.com
Max Jewell, Farrer Kane: +44 (0) 20 7415 7154 | maxjewell@farrerkane.com

For more information on Econic or to inquire about our catalyst technologies, please contact:
Richard French, Business Development Director Econic Technologies | +44 1625 238 645

Author, Anthea Blackburn

Econic Technologies is Named in the 2017 Global Cleantech 100 Ones to Watch List

Alderley Park, Cheshire, UK – November 7, 2017: Econic Technologies, a chemical company that supplies pioneering catalyst systems capable of incorporating bespoke amounts of waste carbon dioxide into polymers for use in the plastics industry, today announced it was named in the 2017 Global Cleantech 100 Ones to Watch list, produced by Cleantech Group (CTG).

The GCT100 Ones to Watch list seeks to highlight a group of up-and-coming companies that are catching the eye of leading investors and corporates in the market. The companies listed made the top 250 in this year’s Global Cleantech 100 program and carry pockets of strong support among the GCT100’s Expert Panel, albeit they did not have quite enough market support (yet!) to make the 9th edition of the Global Cleantech 100 list itself (which will be published on January 22, 2018). As such, these companies represent this year’s Ones to Watch.

“The Global Cleantech 100 program is our annual in-depth research exercise to identify the innovation companies leading players in the market are most excited by right now,” said CTG’s CEO, Richard Youngman. “By the nature of the list, the Ones to Watch truly represent the next cadre of exciting disruptive companies.”

“We are delighted with this recognition of the potential of our catalyst systems to benefit not only the environment with regards to the utilisation and reduction of waste carbon dioxide, but also the economy in terms of the value we can add to our customers’, and their customers’, existing products,” said Rowena Sellens, Econic’s CEO.

This year, a record number of nominations for the annual Global Cleantech 100 list were received: 12,300 distinct companies from 61 countries. These companies were weighted and scored to create a short list of 312 companies, with these nominees reviewed by the 86 members of Cleantech Group’s Expert Panel. The Ones to Watch list, a sister list to the annual Global Cleantech 100 list, is created from the top 250 of the shortlist. To qualify for either list, companies must be independent, for-profit cleantech companies that are not listed on any major stock exchange.

The complete list of the Global Cleantech 100 Ones to Watch list was revealed on November 7, 2017. See the full list at https://i3connect.com/gct100/watch-list

The complete list of Global Cleantech expert panel members is available at https://i3connect.com/gct100/panelist

About Cleantech Group
Founded in 2002, the mission of Cleantech Group (CTG) is to accelerate sustainable innovation. Our subscriptions, events and programs are all designed to help corporates, investors, and all players in the innovation ecosystem discover and connect with the key companies, trends, and people in the market. Our coverage is global, spans the entire clean technology theme and is relevant to the future of all industries. The company is headquartered in San Francisco, with a growing international presence in London.
Our parent company, Enovation Partners, one of Consulting Magazine‘s 2017 Seven Small Jewels, is based in Chicago (learn more at www.enovationpartners.com).

MEDIA CONTACT:
Heather Matheson
Cleantech Group
Tel: +1 (415) 233-9714
Email: heather.matheson@cleantech.com

ECONIC CONTACT:
Richard French, Business Development Director
Tel: +44 (0) 1625 238645
Email: R.French@econic-technologies.com

Author, Anthea Blackburn

The Night Before (a Polyurethane) Christmas

Twas the night before Christmas, when all through the house, not a creature was stirring, not even a mouse. The stockings were hung by the chimney with care, in hope that St Nicholas soon would be there.

christmas-chocolate-santa-sleigh-mould

Many of us will be halfway through our advent calendars by now. Don’t worry though, this isn’t where we tell you the chocolate is made from polyurethane. Rather, the moulds used to shape and store the chocolates are made from polycarbonate. Typically, low molecular weight polycarbonate is used which is durable and flexible enough to pass its shape onto the chocolate, but also allow you to free the chocolate from its casing to enjoy each day.

With a little old driver, so lively and quick, I knew in a moment it must be St Nick. More rapid than eagles his coursers they came, and he whistled, and shouted, and called them by name!
“Now, Dasher! now, Dancer! now, Prancer and Vixen! On, Comet! On, Cupid! on, Donner and Blitzen! To the top of the porch! to the top of the wall! Now dash away! Dash away! Dash away all!”

Santa+reindeerThe impending end of our advent calendars can then mean only one thing – Santa’s visit. With all of the families that Santa visits on Christmas Eve, he surely relies heavily on polyurethane to aid him in the vast distances and climes he will travel through. To reduce friction and make the journey a little easier on his reindeer, his sleigh will most likely be coated in polyurethane. To keep him warm, both at the North Pole and while he’s flying through the night skies, he probably wears boots made from polyurethane incorporated into the shoe’s upper. The hard thermoplastic polyurethane in the soles of his boots are also probably really useful when he needs to clamber over snowy and slippery roofs. And just to be safe, we suggest that he takes an umbrella coated in waterproofing polyurethane in case it’s raining out!

Not all of us, especially those in the Southern Hemisphere, are lucky enough to celebrate a white Christmas. With the help of chemistry though, we can guarantee snow for all this Christmas, not necessarily falling from the sky however. As a more permanent solution, porous polyurethane foam is often coated on artificial Christmas trees to mimic a snow-clad forest tree. Alternatively, a more hands-on snow can be made at home using sodium polyacrylate, a very absorbent polymer, which, when mixed with water, expands in size by many orders of magnitude, and, due to the endothermic nature of water uptake, becomes cold.

He spoke not a word, but went straight to his work, and filled all the stockings, then turned with a jerk. And laying his finger aside of his nose, and giving a nod, up the chimney he rose!

christmas-tree-presents

There is nothing more magical than waking up to a Christmas tree twinkling with lights, sparkling with baubles, and festively surrounded by gifts, a sight that would be lacking, if not for various forms of polyurethane and polycarbonate. Artificial Christmas trees, in combination with polyvinyl chloride or polyethylene fir leaves, comprise a polyurethane foam-based trunk. The decorations and baubles that adorn our trees are typically coated with polyurethane for longevity and shininess, while the lights that trim the tree are encased in a polycarbonate shell. Polyurethane is also prevalent in the gifts under the tree – from the flexible polyurethane foam that protects our packaged gifts, to the rigid polyurethane plastic that makes up our gifts.

At the end of the festivities, rest assured that you can relax in the comfort of your polyurethane foam couch cushions and memory foam mattress, while listening to Christmas songs or watching films on polycarbonate CDs and DVDs. (Polymeric) perfection.

He sprang to his sleigh, to his team gave a whistle, and away they all flew like the down of a thistle. But I heard him exclaim, ‘ere he drove out of sight, “Happy Christmas to all, and to all a good-night!
– Clement Clarke Moore

Happy holidays from the Econic team!

Author, econicuser

Polymers & Plastics in the Paralympics

The 2016 Rio Paralympic Games are now in full swing, with medals being won, records being broken, and a viewers from around the world being inspired. Plastics and polymers have had a huge influence upon these games, which may come as a surprise to you (even the medal ribbons are 50% recycled plastic bottles this year!). Technological and scientific advances are imperative to the continued growth and expansion of the paralympics, and all athletic endeavours. Carry on reading to find out some more about the technology on show at this year’s Games.


Wheelchairs 

Let’s kick off, or more aptly, tip off, with wheelchair basketball. Although the majority of chairs used currently are made from welded titanium, there has been a significant increase in the belief that carbon fibre-reinforced polymers, typically polyepoxide-based, in fact offer the attributes desirable for a more successful wheelchair, typically leading to the chair being lightweight and manoeuvrable, but also able to withstand impact. Carbon fibre-reinforced polymers are more commonly used in running blades, a mainstay of the modern paralympic games, as they offer the best combination of strength and weight. Although this technology is not the norm within more chair-based sports, there are athletes who will be using these chairs, so it’s down to the action on the court for a preview of what may be more widespread in the future for wheelchair basketball.

There have also been developments on the chairs used throughout the games off the basketball court, whereby  British athletes have been able to achieve a 20% increase in acceleration thanks to work between UK Sport and BAE Systems (more commonly associated with the aerospace industry). This increase in speed has been made possible for Team GB’s racing chairs through the development of a new, lighter composite-based wheel, that is also three times more rigid than previous wheels. This rigidity allows for a reduction in a force known as ‘toe-in’, and prevents the wheel from bending inwards as the athletes propel themselves forwards, thereby reducing the amount of friction between the athlete and the track. As we know, a margin of 20% is a big deal in athletic competition, so this development will have a huge impact on athletes’ hunt for gold.

It isn’t only Team GB who have put time into developing their wheelchairs, the US team have teamed up with BMW to create ‘the world’s fastest wheelchair’. The chair does not resemble a traditional chair, with its low, long, and triangular body produced from carbon fibre by BMW’s California-based design firm Designworks. Each chair is also personalised to fit each individual athlete to allow their performance to be optimised even further.These developments will lead to some intense competition this year, which may not only be between the athletes, but also between the companies behind the chairs too.

bmw-wheelchair-hed-2016
Image courtesy of BMW

Canoeing & Kayaking 

Taking a dip in the waters of Brazil may conjure up images of golden beaches and lapping shore lines, and although that may be true, the athletes at the Paralympics will be competing in somewhat less relaxing circumstances. Events such as the paracanoe and rowing are in full effect, and the technology involved is proving to hold an influence on the speed, agility and success of the athletes. The shape, style and flexibility of canoes and kayaks is heavily influenced by innovations in plastics technology, with these materials able to offer the development of more lightweight apparatus without sacrifice of their rigidity.

Canoe events were introduced into the Paralympics for the first time this year, with six medal events added. It is no surprise that racing canoes are no longer made of wood or bark, but instead most are now constructed from the polymer Kevlar, which allows for an increase in speed and agility due to the lightweight nature of the material.

As well as the canoes and kayaks themselves, plastics are incorporated into the events at the Lagoa Stadium in Rio, with high-density polyurethane blocks used to form obstacles. These objects take the form of artificial rocks and are bolted together to the bottom of the water channel in order to constrict the water flow with the aim of replicating a natural whitewater feature.

YbLuiM2H

Image courtesy of Rio 2016 Paralympic Games

Swimming

The use of polyurethane swimsuits has caused much controversy over the years at the Olympic and Paralympic Games, with the use of whole-body suits being banned since 2010 and the the 2012 London Games. Of course, athletes have long sourced any advantages in competition, such as removing every follicle of hair from their bodies, but the banned suits are an example of technology advancement gone too far (in the eyes of the Olympic governing bodies, that is). The suits allowed for swimmers to become far more buoyant as a result of the extremely thin material trapping small pockets of air. Maybe there is room for technological development in this event, but even without these suits, paralympians have already been posting some impressive times in the pool this year.


3D-Printed Prostheses

The world’s first 3D-printed prosthesis will be on show at this year’s Games, a milestone in prosthetic technology. German cyclist Denise Schindler, with the help of software company Autodesk,  will be using the fully 3D-printed polycarbonate-based prosthesis as she competes for gold in Rio. A significant advantage of using such technology is the pace at which the limb can be produced using a 3D printer, rather than by hand as standard athletic prosthetic limbs are generally produced. This increased speed of production allows for any necessary changes to be made to the design with little disruption, meaning the prosthesis can evolve at a greater pace during the production process. Additionally, as the prosthesis is prepared from an electronic blueprint obtained from 3D scanning of the athlete, the joint prepared can provide a much better fit than can be achieved through the useful method of plaster casting.  The team have been printing and testing a range of printed prostheses based on polycarbonate split into two parts, and the development will continue right until the start of the Games, with the aim to have the most aerodynamic version possible.

The hope is that this technology will open the door for these new types of prosthetic limbs to become available not only to elite athletes, but also to be more readily accessible to a much larger range of people who have suffered the loss of a limb. Schindler herself has said that a huge goal of hers is to ‘open up the sports world for the average amputated person’. Developments such as this could not only help to make the dreams of those inspired to compete at the Paralympics a closer reality, but also to assist those using prostheses in their everyday lives.

Video courtesy of Dezeen

 

 

Author, econicuser