A Catch (CO)22 – CO2 shortages in spite of rising atmospheric CO2

As the Northern Hemisphere’s temperatures continue to soar, along with the spirits of those who follow World Cup football, the shortage of CO2 in the UK is becoming more and more apparent. Besides the obvious (and vitally important) use of CO2 in adding the fizz to beer and soft drinks, it is also invaluable in a variety of other food-related fields, including, but not limited to, increasing the shelf life of pre-packaged meat and produce and cooling foodstuff in transit, as well as in a variety of medical devices and in crude oil extraction.

One might ask how we could be experiencing a CO2 shortage considering the issues with the abundance of atmospheric CO2 we are currently working to overcome. Unfortunately, both the inherent chemical stability and relatively low atmospheric concentration (~0.04% by volume of the atmosphere) of CO2 make its isolation for use in other applications somewhat of a currently cost-prohibitive issue. While the primary production of atmospheric CO2 stems from the ever-increasing burning of fossil fuels and deforestation, there are also significant amounts generated through a variety of industries, such as those involved in chemical manufacturing, cement production, or petroleum refining. Fortunately from a process perspective, it is possible for a large number of these industries to collect and store the CO2 that they create as part of their everyday business. They only require then the means with which to safely dispose of or utilise this waste product. And so enters the field of Carbon Capture, Storage and Utilisation (CCSU).

The CCSU industry is made up of three sections – firstly, the sequestering and purification from other gases of CO2 from the atmosphere or as industrial waste; secondly, its storage; or thirdly, its use as a chemical feedstock in the production of value-added products. Carbon capture is undoubtedly a necessary component of CCSU as we continue to produce more and more CO2, and a number of companies exist that aim to take the captured gas and store it indefinitely and out of harm’s way. One such example can be seen in Norway, who have been capturing and storing CO2 from industrial processes for close to 20 years. More recently, with the backing of the Norwegian government and assistance from oil companies Equinor, Shell, and Total, the country are moving towards the introduction of a technology that will transport the captured CO2 to the North Sea, where it will be buried underground. Once in place, this approach will also be available to other countries in the area, and offers a viable alternative to simply releasing the gas into the atmosphere.

Core from injection site showing CO2 bearing carbonate minerals within basaltic host rock. Photo: Sandra O Snaebjornsdottir.
Core from injection site showing CO2 bearing carbonate minerals within basaltic host rock. Photo courtesy of CarbFix.

A similar approach to CCS has also been developed in Iceland by an international team known as CarbFix, who capture CO2 from industrial processes and store it in the basaltic mountains where it turns into rock within only a few months. This success is, in part, possible due to the filter technology developed by Swiss company ClimeWorks, which selectively chemically removes CO2 from the steam generated by a geothermal plant, and concentrates it in water as carbonate ions, which is injected into the ground. This approach is also a possibility in other basaltic regions like Siberia, Western India, Saudi Arabia and the Pacific Northwest, though further advances are required to reduce the water intensive requirements of the technology.

ClimeWorks have also taken their CCS technologies a step further in enabling the purified CO2 to be used, rather than stored indefinitely. This captured CO2 can also be isolated for use as a renewable onsite source of CO2 by the food and agricultural industries, as well as those that use CO2 as a fuel or chemical feedstock. A similar type of extraction technology has also been developed by Carbon Engineering, a Canadian company, who, in conjunction with their hydrogen generation technologies, use the CO2 to create clean diesel and jet fuels.

In order for CO2 to be utilised via its conversion to another more valuable form of carbon, its inherent chemical stability must be overcome: CCU technologies are required. Many such technologies are available (the following is by no means an exhaustive list!), which are useful in so many different industries. One such industry is that of concrete, which is used in its various forms more than any other artificial material in the world. Unfortunately, in its standard form, the manufacture of concrete is extremely energy and resource intensive and generates higher CO2 emissions than almost any other industry. A number of companies exist to rectify these downsides of such an invaluable material, two of which are focused on CCU approaches. CarbonCure technologies allow the CO2 emitted during cement preparation to be transformed into nanosized mineral carbonates that are embedded within the concrete formed. This process can be retrofitted to existing manufacturing assets and also enhances the properties of the resulting material. A somewhat similar approach has been developed by UK-based Carbon8 Aggregate, which uses CO2 to not only transform thermal waste into artificial limestone, but also to solidify the resulting aggregate. This process is remarkable, in that the resulting aggregate has captured more CO2 than is used in the energy required in its manufacture, resulting in the world’s first carbon negative aggregate. Alternatively, Carbon Upcycling uses waste CO2 to solidify a pre-formed and almost carbon neutral building block that resembles concrete and can be used in construction applications where concrete would typically be utilised. What’s more is that the additive nature of this material’s preparation offers the potential for its generation using, for example, 3D printing, which would accelerate construction timelines and decrease the labour intensity required in its manufacture.

carbon8 Process
The process by by which Carbon8 Aggregates takes thermal waste and, using CO2, transforms it into a carbon negative building block for use in construction. Graphic courtesy of Carbon8 Aggregates.

The use of CO2 as a chemical feedstock is another vital aspect of CCU developments – like that of Econic’s innovative catalyst technologies that transform waste CO2 into polyols for use in the plastics industry. Exploiting a similar chemical transformation, Newlight uses a naturally-occurring microorganism-based biocatalyst to transform concentrated CO2 or methane gas into a high performance PHA-based biopolymer that can be used as an alternative to fossil fuel-derived polypropylene, polystyrene, and TPU in a range of applications. CO2 can also be introduced into the electronics and automotive industries as a carbon composite through the preparation of carbon nanotubes using methodologies developed by C2CNT. The carbon nanotubes are prepared using electrolysis, which is a much more cost-effective alternative to the methods of chemical vapor deposition or polymer pulling used currently.

It is clearly evident from this small subset of examples that a huge amount of work is going into the development of technologies that can not only remove harmful CO2, and its effects, from the atmosphere, but also to transform this gas into a chemical that adds economic, product and environmental value to the often fossil fuel-based feedstocks or cost-prohibitive processes that we currently employ. While these solutions unfortunately do not overcome the UK’s impending beer shortage and decreased shelf life of fresh produce, it is surely reassuring to know that the abundance of CO2 in our atmosphere is being removed for our gain in other ways.


To learn more about the endless potential that Econic’s innovative catalyst technology can bring to waste CO2, check out how Econic can make this possible, or contact:

Richard French, Business Development Director Econic Technologies | +44 1625 238 645

Author, Anthea Blackburn